1-220 MHz High Performance Differential Oscillator

TOKYO OLIARTZ CO. LTD

Features

- Any frequency between 1 MHz and 220 MHz accurate to 6 decimal places
- LVPECL and LVDS output signaling types
- 0.6ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- Frequency stability as low as ±10 ppm
- Industrial and extended commercial temperature ranges
- Industry-standard packages: 3.2x2.5, 5.0x3.2 and 7.0x5.0 mmxmm
- For frequencies higher than 220 MHz, refer to TQC9122 datasheet

Applications

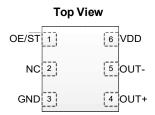
- 10GB Ethernet, SONET, SATA, SAS, Fibre Channel, PCI-Express
- Telecom, networking, instrumentation, storage, servers

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition
	L	VPECL an	d LVDS, C	ommon El	ectrical C	Characteristics
Supply Voltage	Vdd	2.97	3.3	3.63	V	
		2.25	2.5	2.75	V	
		2.25	-	3.63	V	Termination schemes in Figures 1 and 2 - XX ordering code
		1.71	1.8	1.89	V	Only for LVDS output
Output Frequency Range	f	1	-	220	MHz	
Frequency Stability	F_stab	-10	-	+10	ppm	
		-20	-	+20	ppm	Inclusive of initial tolerance, operating temperature, rated power
		-25	-	+25	ppm	supply voltage, and load variations
		-50	-	+50	ppm	
First Year Aging	F_aging1	-2	-	+2	ppm	25°C
10-year Aging	F_aging10	-5	-	+5	ppm	25°C
Operating Temperature Range	T_use	-40	-	+85	°C	Industrial
		-20	-	+70	°C	Extended Commercial
Input Voltage High	VIH	70%	-	-	Vdd	Pin 1, OE or ST
Input Voltage Low	VIL	_	_	30%	Vdd	Pin 1, OE or ST
Input Pull-up Impedance	Z_in	_	100	250	kΩ	Pin 1, OE logic high or logic low, or ST logic high
		2	_	_	ΜΩ	Pin 1, ST logic low
Start-up Time	T_start					, ,
otart-up rime	1_3(a) (-	6	10	ms	Measured from the time Vdd reaches its rated minimum value.
Resume Time	T_resume	_	6	10	ms	In Standby mode, measured from the time \overline{ST} pin crosses 50% threshold.
Duty Cycle	DC	45	-	55	%	Contact TQCime for tighter dutycycle
		LV	/PECL, D	C and AC C	haracteri	istics
Current Consumption	ldd	-	61	69	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE Disable Supply Current	I_OE	-	-	35	mA	OE = Low
Output Disable Leakage Current	I_leak	-	-	1	μА	OE = Low
Standby Current	I_std	-	-	100	μА	ST = Low, for all Vdds
Maximum Output Current	I_driver	_	_	30	mA	Maximum average current drawn from OUT+ or OUT-
Output High Voltage	VOH	Vdd-1.1	_	Vdd-0.7	V	See Figure 1(a)
Output Low Voltage	VOL	Vdd-1.9	-	Vdd-1.5	V	See Figure 1(a)
Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 1(b)
Rise/Fall Time	Tr, Tf	_	300	700	ps	20% to 80%, see Figure 1(a)
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 100 MHz, VDD = 3.3V or 2.5V
		-	1.2	1.7	ps	f = 156.25 MHz, VDD = 3.3V or 2.5V
RMS Phase Jitter (random)	Tinhi	_	1.2	1.7	ps	f = 212.5 MHz, VDD = 3.3V or 2.5V
NING FINASE SILLER (TAHLUUM)	T_phj	_	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds
	•		VDS, DC	and AC Ch	aracteris	tics
Current Consumption	ldd	_	47	55	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
Current Consumption						
OE Disable Supply Current	I_OE	_	-	35	mA	OE = Low

Rev. 1.06 Revised October 20, 2014

1-220 MHz High Performance Differential Oscillator


TOKYO OUARTZ CO. LTD

Electrical Characteristics (continued)

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition	
LVDS, DC and AC Characteristics (continued)							
Output Disable Leakage Current	I_leak	-	-	1	μА	OE = Low	
Standby Current	I_std	-	-	100	μА	ST = Low, for all Vdds	
VOD Magnitude Change	ΔVOD	-	-	50	mV	See Figure 2	
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 2	
VOS Magnitude Change	ΔVOS	-	-	50	mV	See Figure 2	
Rise/Fall Time	Tr, Tf	-	495	700	ps	20% to 80%, see Figure 2	
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period	
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 100 MHz, VDD = 3.3V or 2.5V	
		-	1.2	1.7	ps	f = 156.25 MHz, VDD = 3.3V or 2.5V	
		-	1.2	1.7	ps	f = 212.5 MHz, VDD = 3.3V or 2.5V	
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds	

Pin Description

Pin	Мар	Functionality		
	OE	Input	H or Open: specified frequency output L: output is high impedance	
1	ST	Input	H or Open: specified frequency output L: Device goes to sleep mode. Supply current reduces to I_std.	
2	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation	
3	GND	Power	VDD Power Supply Ground	
4	OUT+	Output	Oscillator output	
5	OUT-	Output	Complementary oscillator output	
6	VDD	Power	Power supply voltage	

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge (HBM)	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

Thermal Consideration

Package	θJA, 4 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050, 6-pin	142	27
5032, 6-pin	97	20
3225, 6-pin	109	20

Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method2003
Moisture Sensitivity Level	MSL1 @ 260°C

Rev. 1.06 Page 2 of 11

TOKYO OUARTZ CO..LTD

Waveform Diagrams

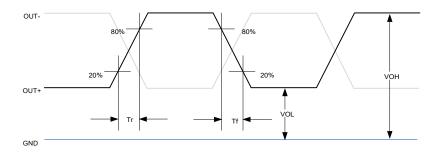


Figure 1(a). LVPECL Voltage Levels per Differential Pin (OUT+/OUT-)

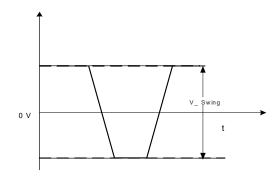


Figure 1(b). LVPECL Voltage Levels Across Differential Pair

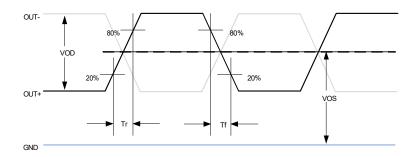


Figure 2. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

Rev. 1.06 Page 3 of 11

TOKYO OUARTZ CO. LTD

Termination Diagrams

LVPECL:

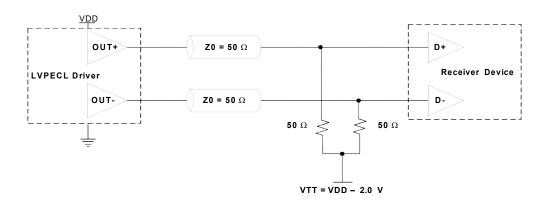


Figure 3. LVPECL Typical Termination

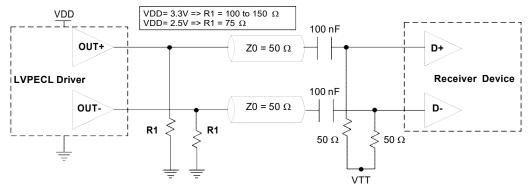


Figure 4. LVPECL AC Coupled Termination

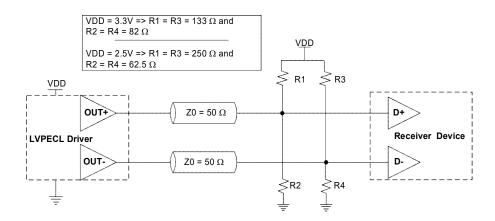


Figure 5. LVPECL with Thevenin Typical Termination

Rev. 1.06 Page 4 of 11

TOKYO OUARTZ CO. LTD

LVDS:

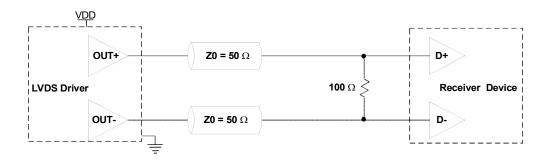
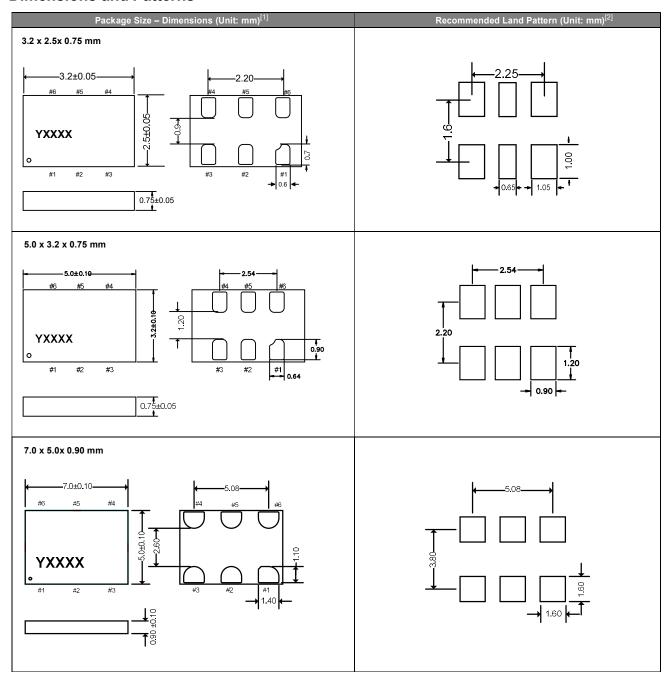
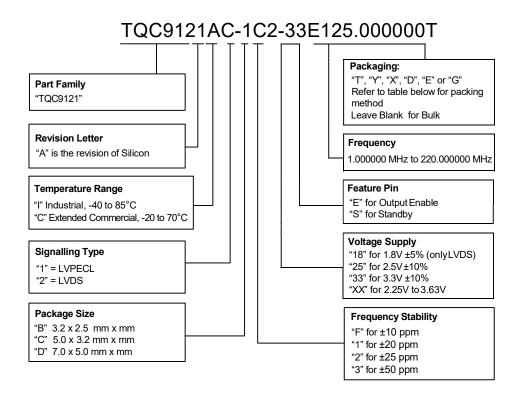



Figure 6. LVDS Single Termination (LoadTerminated)

Rev. 1.06 Page 5 of 11

TOKYO QUARTZ CO.,LTD

Dimensions and Patterns



- Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
 A capacitor of value 0.1 μF between Vdd and GND is recommended.

Rev. 1.06 Page 6 of 11

TOKYO QUARTZ CO.,LTD

Ordering Information

Ordering Codes for Supported Tape & Reel Packing Method

Device Size	8 mm T&R (3ku)	8 mm T&R (1ku)	8 mm T&R (250u)	12 mm T&R (3ku)	12 mm T&R (1ku)	12 mm T&R (250u)	16 mm T&R (3ku)	16 mm T&R (1ku)	16 mm T&R (250u)
7.0 x 5.0 mm	_	_	_	_	-	_	Т	Y	Х
5.0 x 3.2 mm	_	-	-	Т	Y	Х	_	-	-
3.2 x 2.5 mm	D	E	G	Т	Y	Х	_	_	_

Frequencies Not Supported

Range 1: From 209.000001 MHz to 210.999999 MHz

Rev. 1.06 Page 7 of 11

1-220 MHz High Performance Differential Oscillator

TOKYO QUARTZ CO.,LTD

Revision History

Version	Release Date	Change Summary
1.01	2/20/13	Original
1.02	12/3/13	Added input specifications, LVPECL/LVDS waveforms, packaging T&Roptions
1.03	2/6/14	Added 8mm T&R option and ±10 ppm
1.04	4/8/14	Included 1.8V option for LVDS output only
1.05	7/30/14	Included Thermal Consideration table
1.06	10/20/14	Modified Thermal Consideration values. Preliminary removed from the title

Rev. 1.06 Page 8 of 11

TOKYO QUARTZ CO.,LTD

Silicon MEMS Outperforms Quartz

Best Reliability

Silicon is inherently more reliable than quartz. Figure 1 shows a comparison with quartz technology.

Why is EpiSeal™ MEMS Best in Class:

- EpiSeal MEMS resonators are hermetically vacuumsealed during wafer processing, which eliminates foreign particles and improves long term aging and reliability
- MEMS resonator is paired with advanced analog IC

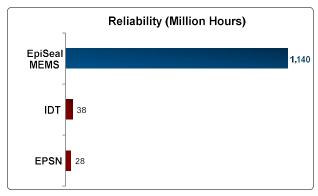


Figure 1. Reliability Comparison[1]

Best Aging

Unlike quartz, EpiSeal MEMS oscillators have excellent longterm aging performance which is why every new EpiSeal MEMS product specifies 10-year aging.

Why is EpiSeal MEMS Best in Class:

- EpiSeal MEMS resonators are hermetically vacuumsealed during wafer processing, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

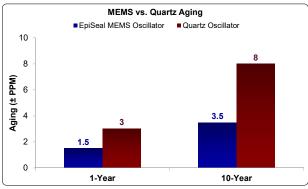


Figure 2. Aging Comparison^[2]

Best Electro Magnetic Susceptibility (EMS)

EpiSeal MEMS oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is EpiSeal MEMS Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to FMS

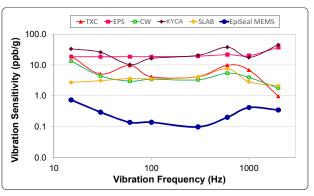


Figure 3. Electro Magnetic Susceptibility (EMS)[3]

Best Power Supply Noise Rejection

EpiSeal MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is EpiSeal MEMS Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- MEMS resonator is paired with advanced analog CMOS IC

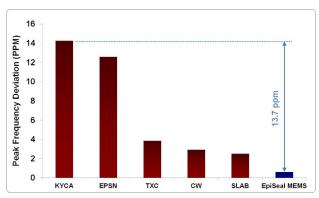


Figure 4. Power Supply Noise Rejection[4]

Rev. 1.06 Page 9 of 11

1-220 MHz High Performance Differential Oscillator

TOKYO QUARTZ CO.,LTD

Best Vibration Robustness

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is EpiSeal MEMS Best in Class:

- The moving mass of MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

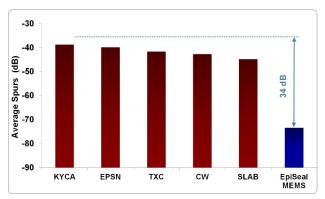


Figure 5. Vibration Robustness^[5]

Best Shock Robustness

EpiSeal MEMS oscillators can withstand at least 50,000g shock. They maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is EpiSeal MEMS Best in Class:

- The moving mass of MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

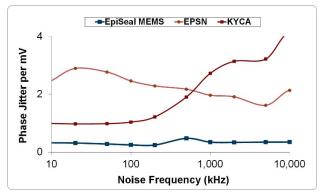


Figure 6. Shock Robustness^[6]

Figure labels:

TXC = TXC
Epson = EPSN
Connor Winfield = CW
Kyocera = KYCA
SiLabs = SLAB
TQC = EpiSeal MEMS

Rev. 1.06 Page 10 of 11

1-220 MHz High Performance Differential Oscillator

TOKYO QUARTZ CO.,LTD

Notes:

- 1. Data source: Reliability documents of named companies.
- 2. Data source: TQC and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 - Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - Antenna polarization: Vertical
 - DUT position: Center aligned to antenna

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	TQC	TQC9120AC-1D2-33E156.250000	MEMS + PLL
EPSN	Epson	EG-2102CA156.2500M-PHPAL3	Quartz, SAW
TXC	TXC	BB-156.250MBE-T	Quartz, 3 rd Overtone
CW	Conner Winfield	P123-156.25M	Quartz, 3 rd Overtone
KYCA	AVX Kyocera	KC7050T156.250P30E00	Quartz, SAW
SLAB	SiLab	590AB-BDG	Quartz, 3 rd Overtone + PLL

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	TQC	TQC8208AI-33-33E-25.000000	MEMS + PLL
NDK	NDK	NZ2523SB-25.6M	Quartz
KYCA	AVX Kyocera	KC2016B25M0C1GE00	Quartz
EPSN	Epson	SG-310SCF-25M0-MB3	Quartz

5. Devices used in this test:

same as EMS test stated in Note 3.

- 6. Test conditions for shock test:
 - MIL-STD-883F Method 2002
 - Condition A: half sine wave shock pulse, 500-g, 1ms
 - Continuous frequency measurement in 100 µs gate time for 10 seconds

Devices used in this test:

same as EMS test stated in Note 3.

7. Additional data, including setup and detailed results, is available upon request to qualified customer.

Rev. 1.06 Page 11 of 11