High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO OHARTZ CO. LTD.

Features

- Frequencies between 119.342001 MHz to 137 MHz accurate to 6 decimal places
- Operating temperature from -55°C to 125°C
- Supply voltage of 1.8V or 2.5V to 3.3V
- Excellent total frequency stability as low as ±20 ppm
- Low power consumption of 4.9 mA typical at 1.8V
- LVCMOS/LVTTL compatible output
- 5-pin SOT23-5 package: 2.9mm x 2.8mm
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

Applications

■ Ruggedized equipment in harsh operating environment

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
			Fr	equency Ra	nge	
Output Frequency Range	f	119.342001	-	137	MHz	Refer to Table 14 for the exact list of supported frequencies
			Frequen	cy Stability	and Aging	
Frequency Stability	F_stab	-20	_	+20	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
		-25	-	+25	ppm	variations over operating temperature, rated power supply voltage and load (15 pF ± 10%).
		-30	-	+30	ppm	Vollago una loda (10 pr. 1 10%).
		-50	-	+50	ppm	
			Operatin	g Temperat		
Operating Temperature Range	T_use	-55	-	+125	°C	
				e and Curre		nption
Supply Voltage	Vdd	1.62	1.8	1.98	V	
		2.25	2.5	2.75	V	
		2.52	2.8	3.08	V	
		2.7	3.0	3.3	V	
		2.97	3.3	3.63	V	
		2.25	-	3.63	V	
Current Consumption	ldd	-	6.2	8 7	mA	No load condition, f = 125 MHz, Vdd = 2.8V, 3.0V or 3.3V
		-	5.4 4.9	6	mA	No load condition, f = 125 MHz, Vdd = 2.5V
OE Disable Current	Lod	_	4.9	4.7	mA	No load condition, f = 125 MHz, Vdd = 1.8V
OE Disable Current	I_od				mA	Vdd = 2.5V to 3.3V, OE = Low, Output in high Z state.
		-	-	4.5	mA	Vdd = 1.8V, OE = Low, Output in high Zstate.
Standby Current	I_std	-	2.6	8.5	μА	Vdd = 2.8V to 3.3V, ST = Low, Output is weakly pulled down
			1.4	5.5	μА	Vdd = 2.5V, ST = Low, Output is weakly pulled down
		-	0.6	4.0	μΑ	Vdd = 1.8V, ST = Low, Output is weakly pulled down
	•		LVCMOS	Output Cha	racteristic	s
Duty Cycle	DC	45	_	55	%	All Vdds
Rise/Fall Time	Tr, Tf	_	1.0	2.0	ns	Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
		_	1.3	2.5	ns	Vdd =1.8V, 20% - 80%
		-	1.0	3	ns	Vdd = 2.25V - 3.63V, 20% - 80%
Output High Voltage	VOH	90%		-	Vdd	IOH = -4 mA (Vdd = 3.0V or 3.3V) IOH = -3 mA (Vdd = 2.8V or 2.5V) IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	-		10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V) IOL = 3 mA (Vdd = 2.8V or 2.5V) IOL = 2 mA (Vdd = 1.8V)

Rev. 1.01 Revised September 29, 2015

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Table 1. Electrical Characteristics (continued)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
			Inp	ut Characte	eristics	
Input High Voltage	VIH	70%	-	_	Vdd	Pin 1, OE or ST
Input Low Voltage	VIL	-	-	30%	Vdd	Pin 1, OE or ST
Input Pull-up Impedance	Z_in	50	87	150	kΩ	Pin 1, OE logic high or logic low, or ST logic high
		2	-	-	МΩ	Pin 1, ST logic low
			Startu	p and Resu	meTiming	•
Startup Time	T_start	-	-	5	ms	Measured from the time Vdd reaches its rated minimum value
Enable/Disable Time	T_oe	-	-	130	ns	f = 119.342001 MHz. For other frequencies, T_oe = 100 ns + 3 * clock periods
Resume Time	T_resume	-	-	5	ms	Measured from the time \overline{ST} pin crosses 50% threshold
				Jitter		
RMS Period Jitter	T_jitt	-	1.6	2.5	ps	f = 125 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
		-	1.8	3	ps	f = 125 MHz, Vdd = 1.8V
Peak-to-peak Period Jitter	T_pk	-	12	20	ps	f = 125 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
		-	14	25	ps	f = 125 MHz, Vdd = 1.8V
RMS Phase Jitter (random)	T_phj	-	0.5	0.8	ps	f = 125 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
		-	1.3	2	ps	f = 125 MHz, Integration bandwidth = 12 kHz to 20 MHz

Table 2. Pin Description

Pin	Symbol		Functionality		
1	GND	Power	Electrical ground		
2	NC	No Connect	No connect		
		Output Enable	H ^[1] : specified frequency output L: output is high impedance. Only output driver is disabled.		
3	3 OE/ST/NC		H or Open ^[1] : specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to I_std.		
No Connect		No Connect	Any voltage between 0 and Vdd or Open ^[1] : Specified frequency output. Pin 3 has no function.		
4	VDD	Power	Power supply voltage ^[2]		
5	OUT	Output	Oscillator output		

Notes:

- 1. In OE or \overline{ST} mode, a pull-up resistor of 10 k Ω or less is recommended if pin 3 is not externally driven. If pin 3 needs to be left floating, use the NC option.
- 2. A capacitor of value 0.1 μF or higher between Vdd and GND is required.

Top View

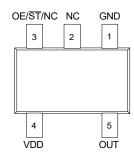


Figure 1. Pin Assignments

Rev. 1.01 Page 2 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO OUARTZ CO. LTD

Table 3. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Junction Temperature ^[3]	-	150	°C

Note:

Table 4. Thermal Consideration^[4]

Package	θ _{JA} , 4 Layer Board (°C/W)	θ _{JC} , Bottom (°C/W)
SOT23-5	421	175

Note

Table 5. Maximum Operating Junction Temperature^[5]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature		
125°C	135°C		

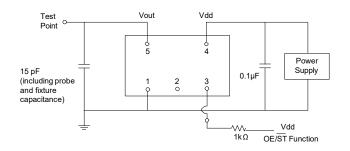
Note:

Table 6. Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

Rev. 1.01 Page 3 of 15

^{3.} Exceeding this temperature for extended period of time may damage the device.


^{4.} Refer to JESD51 for θ_{JA} and θ_{JC} definitions, and reference layout used to determine the θ_{JA} and θ_{JC} values in the above table.

^{5.} Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO OUARTZ CO. LTD

Test Circuit and Waveform^[6]

Tr — Tf

80% Vdd

50%

20% Vdd

High Pulse
(TH)

Period

Period

Figure 2. Test Circuit

Note:

6. Duty Cycle is computed as Duty Cycle =TH/Period.

Figure 3. Output Waveform

Timing Diagrams

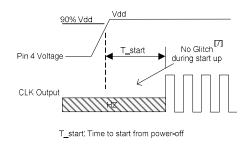
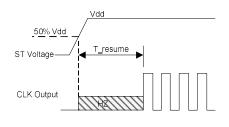
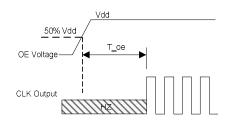




Figure 4. Startup Timing (OE/ST Mode)

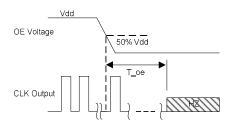

T_resume: Time to resume from ST

Figure 5. Standby Resume Timing (ST Mode Only)

T_oe: Time to re-enable the clock output

Figure 6. OE Enable Timing (OE Mode Only)

T_oe: Time to put the output in High Z mode

Figure 7. OE Disable Timing (OE Mode Only)

Note:

7. TQC2021 has "no runt" pulses and "no glitch" output during startup or resume.

Rev. 1.01 Page 4 of 15

TOKYO QUARTZ CO.,LTD

Performance Plots^[8]

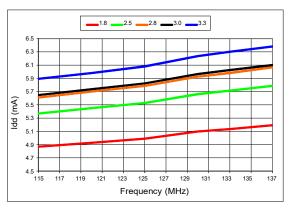
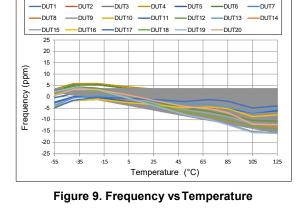



Figure 8. Idd vs Frequency

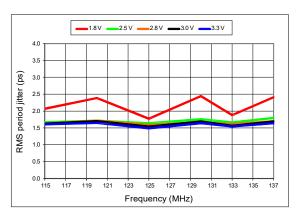


Figure 10. RMS Period Jitter vs Frequency

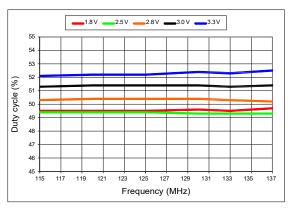


Figure 11. Duty Cycle vs Frequency

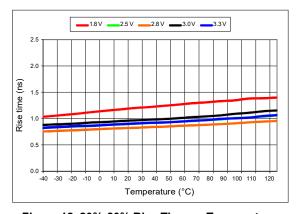


Figure 12. 20%-80% Rise Time vs Temperature (125 MHz Output)

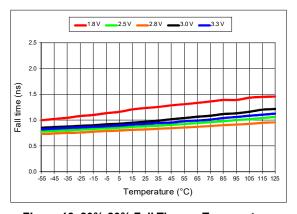


Figure 13. 20%-80% Fall Time vs Temperature (125 MHz Output)

Rev. 1.01 Page 5 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Performance Plots^[8]

Figure 14. RMS Integrated Phase Jitter Random (12 kHz to 20 MHz) vs Frequency^[9]

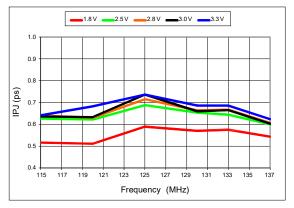


Figure 15. RMS Integrated Phase Jitter Random (900 kHz to 20 MHz) vs Frequency^[9]

Notes:

- 8. All plots are measured with 15 pF load at room temperature, unless otherwise stated.
- 9. Phase noise plots are measured with Agilent E5052B signal source analyzer.

Rev. 1.01 Page 6 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Programmable Drive Strength

The TQC2021 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are:

- Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time.
- Improves the downstream clock receiver's (RX) jitter by decreasing (speeding up) the clock rise/fall time.
- Ability to drive large capacitive loads while maintaining full swing with sharp edge rates.

For more detailed information about rise/fall time control and drive strength selection, see the TQC Application Notes

EMI Reduction by Slowing Rise/Fall Time

Figure 16 shows the harmonic power reduction as the rise/fall times are increased (slowed down). The rise/fall times are expressed as a ratio of the clock period. For the ratio of 0.05, the signal is very close to a square wave. For the ratio of 0.45, the rise/fall times are very close to near-triangular waveform. These results, for example, show that the 11th clock harmonic can be reduced by 35 dB if the rise/fall edge is increased from 5% of the period to 45% of the period.

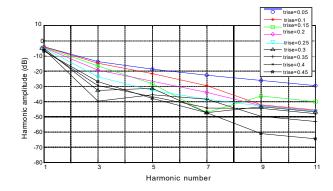


Figure 16. Harmonic EMI reduction as a Function of Slower Rise/Fall Time

Jitter Reduction with Faster Rise/Fall Time

Power supply noise can be a source of jitter for the downstream chipset. One way to reduce this jitter is to speed up the rise/fall time of the input clock. Some chipsets may also require faster rise/fall time in order to reduce their senTQCivity to this type of jitter. Refer to the Rise/Fall Time Tables (Table 7 to Table 11) to determine the proper drive strength.

High Output Load Capability

The rise/fall time of the input clock varies as a function of the actual capacitive load the clock drives. At any given drive strength, the rise/fall time becomes slower as the output load increases. As an example, for a 3.3V TQC2021 device with default drive strength setting, the typical rise/fall time is 0.46 ns for 5 pF output load. The typical rise/fall time slows down to 1 ns when the output load increases to 15 pF. One can choose to speed up the rise/fall time to 0.72 ns by then increasing the driven strength setting on the TQC2021 to "F".

The TQC2021 can support up to 30 pF in maximum capacitive loads with up to 3 additional drive strength settings. Refer to the Rise/Tall Time Tables (Table 7 to 11) to determine the proper drive strength for the desired combination of output load vs. rise/fall time.

TQC2021 Drive Strength Selection

Tables 7 through 11 define the rise/fall time for a given capacitive load and supply voltage.

- Select the table that matches the TQC2021 nominal supply voltage (1.8V, 2.5V, 2.8V, 3.0V, 3.3V).
- 2. Select the capacitive load column that matches the application requirement (5 pF to 30 pF).
- 3. Under the capacitive load column, select the desired rise/fall times.
- 4. The left-most column represents the part number code for the corresponding drive strength.
- 5. Add the drive strength code to the part number for ordering purposes.

Calculating Maximum Frequency

Based on the rise and fall time data given in Tables 7 through 11, the maximum frequency the oscillator can operate with guaranteed full swing of the output voltage over temperature can be calculated as follows:

Max Frequency =
$$\frac{1}{5 \times T \text{ rf}_20/80}$$

where $Trf_20/80$ is the typical value for 20%-80% rise/fall time.

Example 1

Calculate f_{MAX} for the following condition:

- Vdd = 3.3V (Table 11)
- · Capacitive Load: 30 pF
- Desired Tr/f time = 1.46 ns (rise/fall time part number code = U)

Part number for the above example:

TQC2021BIU12-33E-136.986300

Drive strength code is inserted here. Default setting is "-"

Rev. 1.01 Page 7 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Rise/Fall Time (20% to 80%) vs C_{LOAD} Tables

Table 7. Vdd = 1.8V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \CLOAD 5 pF 15 pF 30 pF					
T	0.93	n/a	n/a		
Е	0.78	n/a	n/a		
U	0.70	1.48	n/a		
F or "-": default	0.65	1.30	n/a		

Table 8. Vdd = 2.5V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)						
Drive Strength \ C _{LOAD} 5 pF 15 pF 30 pF						
R	1.45	n/a	n/a			
В	1.09	n/a	n/a			
Т	0.62	1.28	n/a			
Е	0.54	1.00	n/a			
U or "-": default	0.43	0.96	n/a			
F	0.34	0.88	n/a			

Table 9. Vdd = 2.8V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF		
R	1.29	n/a	n/a		
В	0.97	n/a	n/a		
T	0.55	1.12	n/a		
Е	0.44	1.00	n/a		
U or "-": default	0.34	0.88	n/a		
F	0.29	0.81	1.48		

Table 10. Vdd = 3.0V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ(ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF		
R	1.22	n/a	n/a		
В	0.89	n/a	n/a		
T or "-": default	0.51	1.00	n/a		
E	0.38	0.92	n/a		
U	0.30	0.83	n/a		
F	0.27	0.76	1.39		

Table 11. Vdd = 3.3V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF		
R	1.16	n/a	n/a		
В	0.81	n/a	n/a		
T or "-": default	0.46	1.00	n/a		
E	0.33	0.87	n/a		
U	0.28	0.79	1.46		
F	0.25	0.72	1.31		

Note:

Rev. 1.01 Page 8 of 15

^{10. &}quot;n/a" in Table 7 to Table 11 indicates that the resulting rise/fall time from the respective combination of the drive strength and output load does not provide rail-to-rail swing and is not available.

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Pin 3 Configuration Options (OE, ST, or NC)

Pin 3 of the TQC2021 can be factory-programmed to support three modes: Output Enable (OE), standby (\overline{ST}) or No Connect (NC).

Output Enable (OE) Mode

In the OE mode, applying logic Low to the OE pin only disables the output driver and putTQC in Hi-Z mode. The core of the device continues to operate normally. Power consumption is reduced due to the inactivity of the output. When the OE pin is pulled High, the output is typically enabled in <1µs.

Standby (ST) Mode

In the \overline{ST} mode, a device enters into the standby mode when Pin 3 pulled Low. All internal circuits of the device are turned off. The current is reduced to a standby current, typically in the range of a few μA . When \overline{ST} is pulled High, the device goes through the "resume" process, which can take up to 5 ms.

No Connect (NC) Mode

In the NC mode, the device always operates in its normal mode and outputs the specified frequency regardless of the logic level on pin 3.

Table 12 below summarizes the key relevant parameters in the operation of the device in OE, \overline{ST} , or NC mode.

Table 12. OE vs. ST vs. NC

	OE	ST	NC
Active current 125 MHz (max, 1.8V)	6 mA	6 mA	6 mA
OE disable current (max. 1.8V)	4.5 mA	N/A	N/A
Standby current (typical 1.8V)	N/A	0.6 uA	N/A
OE enable time at 125 MHz (max)	130 ns	N/A	N/A
Resume time from standby (max, all frequency)	N/A	5 ms	N/A
Output driver in OE disable/standby mode	High Z	weak pull-down	N/A

Output on Startup and Resume

The TQC2021 comes with gated output. Its clock output is accurate to the rated frequency stability within the first pulse from initial device startup or resume from the standby mode. In addition, the TQC2021 has "no runt" pulses, "no glitch"

In addition, the TQC2021 has "no runt" pulses, "no glitch" output during startup or resume as shown in the waveform captures in Figure 17 and Figure 18.

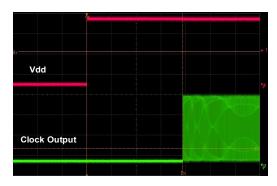
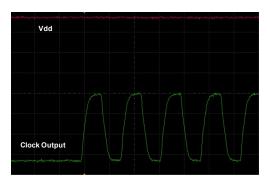
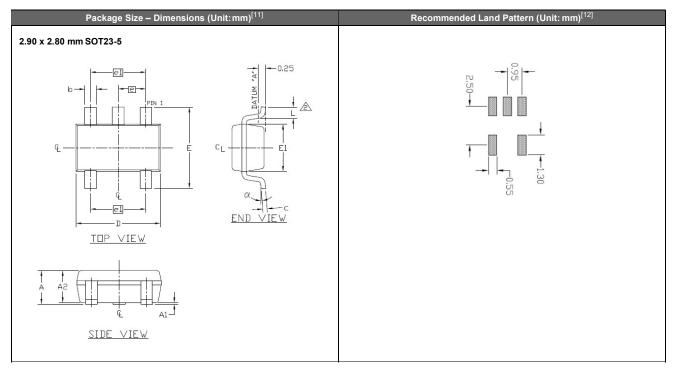


Figure 17. Startup Waveform vs. Vdd




Figure 18. Startup Waveform vs. Vdd (Zoomed-in View of Figure 17)

Rev. 1.01 Page 9 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Dimensions and Patterns

- 11.Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.

 12. A capacitor value of 0.1 µF between Vdd and GND is required

Table 13. Dimension Table

Symbol	Min.	Nom.	Max.
A	0.90	1.27	1.45
A1	0.00	0.07	0.15
A2	0.90	1.20	1.30
b	0.30	0.35	0.50
С	0.14	0.15	0.20
D	2.75	2.90	3.05
E	2.60	2.80	3.00
E1	1.45	1.60	1.75
L	0.30	0.38	0.55
L1	0.25 REF		
е	0.95 BSC.		
e1	1.90 BSC.		
α	0°	_	8°

Rev. 1.01 Page 10 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Ordering Information

The Part No. Guide is for reference only. To customize and build an exact part number, use the TQC Part Number Generator.

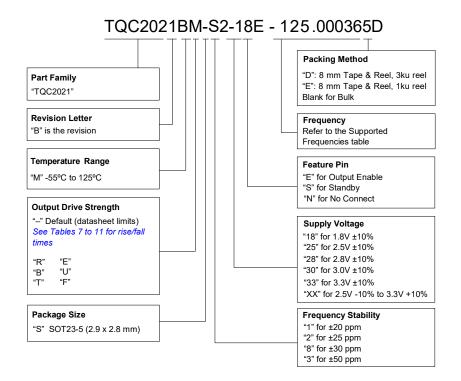


Table 14. List of Supported Frequencies^[13, 14]

Frequency Range -55 to +125°C		
Min.	Max.	
119.342001 MHz	120.238999 MHz	
120.262001 MHz	121.169999 MHz	
121.243001 MHz	121.600999 MHz	
123.948001 MHz	137.000000 MHz	

Notes:

13. Any frequency within the min and max values in the above table are supported with 6 decimal places of accuracy.

Rev. 1.01 Page 11 of 15

^{14.} Please contact TQC for frequencies that are not listed in the tables above.

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Table 15. Additional Information

Document	Description	Download Link
Time Machine II	MEMS oscillator programmer	
Field Programmable Oscillators	Devices that can be programmable in the field by Time Machine II	
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	
Qualification Reports	RoHS report, reliability reports, compoTQCion	
Performance Reports	Additional performance data such as phase noise, current consumption and jitter for selected frequencies	
Termination Techniques	Termination design recommendations	
Layout Techniques	Layout recommendations	

Revision History

Table 16. Datasheet Version and Change Log

Version	Release Date	Change Summary
1.0	5/14/15	Final Production Release.
1.01	9/29/15	Revised the dimension table

Rev. 1.01 Page 12 of 15

TOKYO QUARTZ CO.,LTD

Silicon MEMS Outperforms Quartz

Best Reliability

Silicon is inherently more reliable than quartz. Figure 1 shows a comparison with quartz technology.

Why is EpiSeal™ MEMS Best in Class:

- EpiSeal MEMS resonators are hermetically vacuumsealed during wafer processing, which eliminates foreign particles and improves long term aging and reliability
- MEMS resonator is paired with advanced analog IC

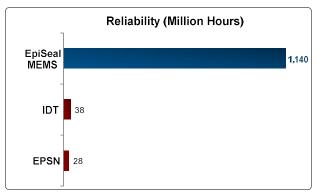


Figure 1. Reliability Comparison[1]

Best Aging

Unlike quartz, EpiSeal MEMS oscillators have excellent longterm aging performance which is why every new EpiSeal MEMS product specifies 10-year aging.

Why is EpiSeal MEMS Best in Class:

- EpiSeal MEMS resonators are hermetically vacuumsealed during wafer processing, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

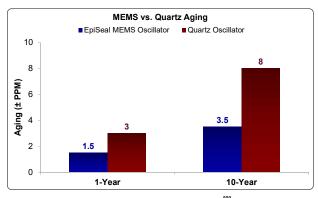


Figure 2. Aging Comparison[2]

Best Electro Magnetic Susceptibility (EMS)

EpiSeal MEMS oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is EpiSeal MEMS Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to EMS

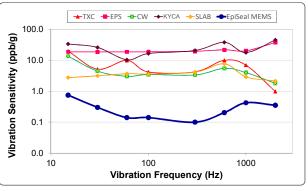


Figure 3. Electro Magnetic Susceptibility (EMS)[3]

Best Power Supply Noise Rejection

EpiSeal MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is EpiSeal MEMS Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- MEMS resonator is paired with advanced analog CMOS IC

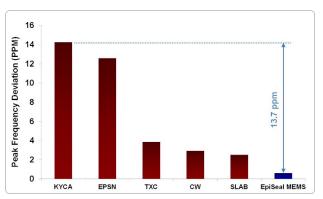


Figure 4. Power Supply Noise Rejection^[4]

Rev. 1.01 Page 13 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Best Vibration Robustness

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is EpiSeal MEMS Best in Class:

- The moving mass of MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

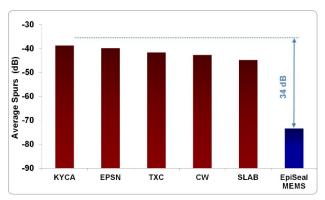


Figure 5. Vibration Robustness^[5]

Best Shock Robustness

EpiSeal MEMS oscillators can withstand at least 50,000g shock. They maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is EpiSeal MEMS Best in Class:

- The moving mass of MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

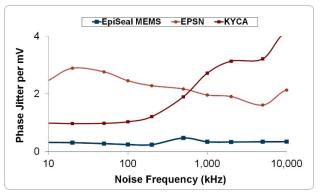


Figure 6. Shock Robustness^[6]

Figure labels:

TXC = TXC

Epson = EPSN

Connor Winfield = CW

Kyocera = KYCA

SiLabs = SLAB

TQC = EpiSeal MEMS

Rev. 1.01 Page 14 of 15

High Frequency, -55°C to +125°C One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Notes:

- 1. Data source: Reliability documents of named companies.
- 2. Data source: TQC and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 - Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - Antenna polarization: Vertical
 - DUT position: Center aligned to antenna

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	TQC	TQC9120AC-1D2-33E156.250000	MEMS + PLL
EPSN	Epson	EG-2102CA156.2500M-PHPAL3	Quartz, SAW
TXC	TXC	BB-156.250MBE-T	Quartz, 3 rd Overtone
CW	Conner Winfield	P123-156.25M	Quartz, 3 rd Overtone
KYCA	AVX Kyocera	KC7050T156.250P30E00	Quartz, SAW
SLAB	SiLab	590AB-BDG	Quartz, 3 rd Overtone + PLL

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	TQC	TQC8208AI-33-33E-25.000000	MEMS + PLL
NDK	NDK	NZ2523SB-25.6M	Quartz
KYCA	AVX Kyocera	KC2016B25M0C1GE00	Quartz
EPSN	Epson	SG-310SCF-25M0-MB3	Quartz

5. Devices used in this test:

same as EMS test stated in Note 3.

- 6. Test conditions for shock test:
 - MIL-STD-883F Method 2002
 - Condition A: half sine wave shock pulse, 500-g, 1ms
 - Continuous frequency measurement in 100 µs gate time for 10 seconds

Devices used in this test:

same as EMS test stated in Note 3.

7. Additional data, including setup and detailed results, is available upon request to qualified customer.

Rev. 1.01 Page 15 of 15