-55°C to +125°C, Single-Chip, One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Features

Any frequency between 1 MHz to 110 MHz accurate to 6 decimal places of accuracy

- Operating temperature from -55°C to 125°C
- Excellent total frequency stability as low as ±20 ppm
- Low power consumption of 3.5 mA typical at 1.8V
- LVCMOS/LVTTL compatible output
- 5-pin SOT23-5: 2.9mm x 2.8mm
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free
- For AEC-Q100 oscillators, refer to TQC2024 and TQC2025

Applications

■ Ruggedized equipment in harsh operating environment

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
			F	requency R	ange	
Output Frequency Range	f	1	_	110	MHz	Refer to Table 14 for the exact list of supported frequencies
			Freque	ncy Stability	and Aging	I
Frequency Stability	F_stab	-20	_	+20	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
		-25	_	+25	ppm	variations over operating temperature, rated power supply voltage and load (15 pF ± 10%).
		-30	_	+30	ppm	- remage and read (10 pr = 1070).
		-50	-	+50	ppm	
			Operati	ng Tempera	ature Range	
Operating Temperature Range	T_use	-55	-	+125	°C	
		S	upply Voltag	ge and Curre	ent Consun	nption
Supply Voltage	Vdd	1.62	1.8	1.98	V	
		2.25	2.5	2.75	V	
		2.52	2.8	3.08	V	
		2.7	3.0	3.3	V	
		2.97	3.3	3.63	V	
		2.25	-	3.63	V	
Current Consumption	Idd	-	3.8	4.7	mA	No load condition, f = 20 MHz, Vdd = 2.8V, 3.0V, 3.3V or 2.25 to 3.63V
		-	3.6	4.5	mA	No load condition, f = 20 MHz, Vdd = 2.5V
		-	3.5	4.5	mA	No load condition, f = 20 MHz, Vdd = 1.8V
OE Disable Current	l_od	-	-	4.5	mA	Vdd = 2.5V to 3.3V, OE = Low, Output in high Z state
		-	-	4.3	mA	Vdd = 1.8V, OE = Low, Output in high Zstate
Standby Current	I_std	-	2.6	8.5	μΑ	Vdd = 2.8V to 3.3V, ST = Low, Output is weakly pulled down
		-	1.4	5.5	μΑ	Vdd = 2.5V, ST = Low, Output is weakly pulled down
		-	0.6	4.0	μΑ	Vdd = 1.8V, ST = Low, Output is weakly pulled down
			LVCMOS	Output Ch	aracteristic	s
Duty Cycle	DC	45	_	55	%	All Vdds
Rise/Fall Time	Tr, Tf	-	1.0	2.0	ns	Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
		-	1.3	2.5	ns	Vdd =1.8V, 20% - 80%
		-	1	3.0	ns	Vdd = 2.25V - 3.63V, 20% - 80%
Output High Voltage	VOH	90%	_	_	Vdd	IOH = -4 mA (Vdd = 3.0V or 3.3V) IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V) IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V) IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V) IOL = 2 mA (Vdd = 1.8V)
			Inp	ut Characte	ristics	
Input High Voltage	VIH	70%	_	_	Vdd	Pin 3, OE or ST
Input Low Voltage	VIL	-	-	30%	Vdd	Pin 3, OE or ST
Input Pull-up Impedance	Z_in	50	87	150	kΩ	Pin 3, OE logic high or logic low, or ST logic high
		2	-	_	MΩ	Pin 3, ST logic low

Rev. 1.01 Revised September 29, 2015

-55°C to +125°C, Single-Chip, One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Table 1. Electrical Characteristics (continued)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition			
Startup and Resume Timing									
Startup Time	T_start	_	_	5	ms	Measured from the time Vdd reaches its rated minimum value			
Enable/Disable Time	T_oe	_	-	140	ns	f = 75 MHz. For other frequencies, T_oe = 100 ns + 3 *cloperiods			
Resume Time	T_resume	-	_	5	ms	Measured from the time ST pin crosses 50%threshold			
				Jitter					
RMS Period Jitter	T_jitt	_	1.6	2.5	ps	f = 75MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V			
		_	1.9	3	ps	f = 75MHz, Vdd = 1.8V			
Peak-to-peak Period Jitter	T_pk	_	12	20	ps	f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V			
		-	14	25	ps	f = 75 MHz, Vdd = 1.8V			
RMS Phase Jitter (random)	T_phj	-	0.5	0.8	ps	Integration bandwidth = 900 kHz to 7.5 MHz			
		-	1.3	2	ps	Integration bandwidth = 12 kHz to 20 MHz			

Table 2. Pin Description

Pin	Symbol		Functionality			
1	GND	Power	Electrical ground			
2	NC	No Connect	No connect			
		Output Enable	H ^[1] : specified frequency output L: output is high impedance. Only output driver is disabled.			
3	3 OE/ST/NC Standby No Connect		H or Open ^[1] : specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to I_std.			
			Any voltage between 0 and Vdd or Open ^[1] : Specified frequency output. Pin 3 has no function.			
4	VDD	Power	Power supply voltage ^[2]			
5	OUT	Output	Oscillator output			

- 1. In OE or \overline{ST} mode, a pull-up resistor of 10 k Ω or less is recommended if pin 3 is not externally driven. If pin 3 needs to be left floating, use the NC option.
- 2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.

Top View

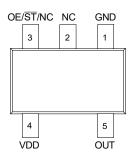


Figure 1. Pin Assignments

Rev. 1.01 Page 2 of 15

-55°C to +125°C, Single-Chip, One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Table 3. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
StorageTemperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Junction Temperature ^[3]	-	150	°C

Note:

Table 4. Thermal Consideration^[4]

Package	θ _{JA} , 4 Layer Board (°C/W)	θ _{JC} , Bottom (°C/W)
SOT23-5	421	175

Note

Table 5. Maximum Operating Junction Temperature^[5]

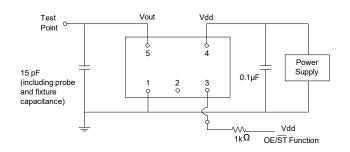
Max OperatingTemperature	Maximum Operating JunctionTemperature
125°C	135°C

Note:

Table 6. Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

Rev. 1.01 Page 3 of 15


^{3.} Exceeding this temperature for extended period of time may damage the device.

^{4.} Refer to JESD51 for θ_{JA} and θ_{JC} definitions, and reference layout used to determine the θ_{JA} and θ_{JC} values in the above table.

^{5.} Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

TOKYO OUARTZ CO. LTD

Test Circuit and Waveform^[6]

Tr — Tf

80% Vdd

50%

20% Vdd

High Pulse
(TH)

Period

Period

Figure 2. Test Circuit

Note:

6. Duty Cycle is computed as Duty Cycle =TH/Period.

Figure 3. Output Waveform

Timing Diagrams

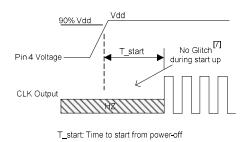
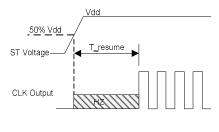
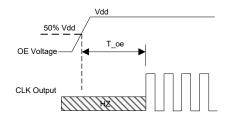




Figure 4. Startup Timing (OE/ST Mode)

T_resume: Time to resume from ST

Figure 5. Standby Resume Timing (ST Mode Only)

T_oe: Time to re-enable the clock output

OE Voltage

CLK Output

T_oe

T_oe: Time to put the output in High Z mode

Figure 6. OE Enable Timing (OE Mode Only)

Note:

7. TQC2020 has "no runt" pulses and "no glitch" output during startup or resume.

Figure 7. OE Disable Timing (OE Mode Only)

Rev. 1.01 Page 4 of 15

Performance Plots^[8]

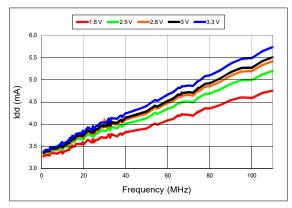


Figure 8. Idd vs Frequency

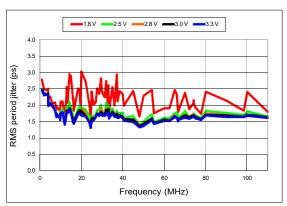


Figure 10. RMS Period Jitter vs Frequency

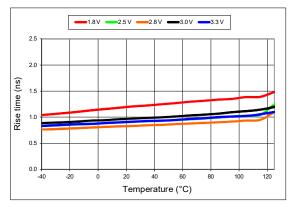


Figure 12. 20%-80% Rise Timevs Temperature

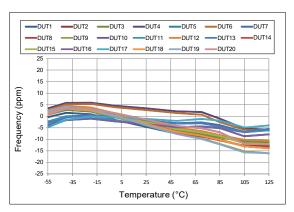


Figure 9. Frequency vs Temperature

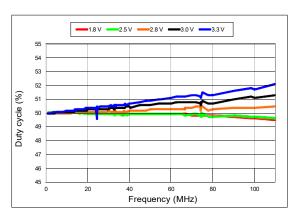


Figure 11. Duty Cycle vs Frequency

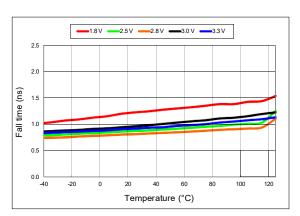


Figure 13. 20%-80% Fall Time vs Temperature

Rev. 1.01 Page 5 of 15

TOKYO OUARTZ CO. LTD

Performance Plots^[8]

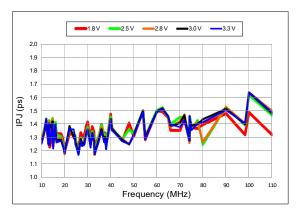


Figure 14. RMS Integrated Phase Jitter Random (12k to 20 MHz) vs Frequency^[9]

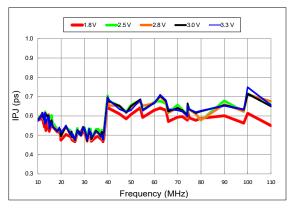


Figure 15. RMS Integrated Phase Jitter Random (900 kHz to 20 MHz) vs Frequency^[9]

Notes:

- 8. All plots are measured with 15 pF load at room temperature, unless otherwise stated.
- 9. Phase noise plots are measured with Agilent E5052B signal source analyzer. Integration range is up to 5 MHz for carrier frequencies below 40 MHz.

Rev. 1.01 Page 6 of 15

TOKYO QUARTZ CO.,LTD

Programmable Drive Strength

The TQC2020 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are:

- Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time.
- Improves the downstream clock receiver's (RX) jitter by decreasing (speeding up) the clock rise/fall time.
- Ability to drive large capacitive loads while maintaining full swing with sharp edge rates.

For more detailed information about rise/fall time control and drive strength selection, see the TQC Application Notes section:

EMI Reduction by Slowing Rise/Fall Time

Figure 16 shows the harmonic power reduction as the rise/fall times are increased (slowed down). The rise/fall times are expressed as a ratio of the clock period. For the ratio of 0.05, the signal is very close to a square wave. For the ratio of 0.45, the rise/fall times are very close to near-triangular waveform. These results, for example, show that the 11th clock harmonic can be reduced by 35 dB if the rise/fall edge is increased from 5% of the period to 45% of the period.

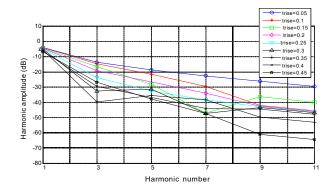


Figure 16. Harmonic EMI reduction as a Function of Slower Rise/Fall Time

Jitter Reduction with Faster Rise/Fall Time

Power supply noise can be a source of jitter for the downstream chipset. One way to reduce this jitter is to speed up the rise/fall time of the input clock. Some chipsets may also require faster rise/fall time in order to reduce their sensitivity to this type of jitter. Refer to the Rise/Fall Time Tables (Table 7 to Table 11) to determine the proper drive strength.

High Output Load Capability

The rise/fall time of the input clock varies as a function of the actual capacitive load the clock drives. At any given drive strength, the rise/fall time becomes slower as the output load increases. As an example, for a 3.3V TQC2020 device with default drive strength setting, the typical rise/fall time is 1 ns for 15 pF output load. The typical rise/fall time slows down to 2.6 ns when the output load increases to 45 pF. One can choose to speed up the rise/fall time to 1.83 ns by then increasing the drive strength setting on the TQC2020.

The TQC2020 can support up to 60 pF in maximum capacitive loads with drive strength settings. Refer to the Rise/Tall Time Tables (Table 7 to 11) to determine the proper drive strength for the desired combination of output load vs. rise/fall time.

TQC2020 Drive Strength Selection

Tables 7 through 11 define the rise/fall time for a given capacitive load and supply voltage.

- 1. Select the table that matches the TQC2020 nominal supply voltage (1.8V, 2.5V, 2.8V, 3.0V, 3.3V).
- 2. Select the capacitive load column that matches the application requirement (5 pF to 60 pF)
- 3. Under the capacitive load column, select the desired rise/fall times.
- The left-most column represents the part number code for the corresponding drive strength.
- Add the drive strength code to the part number for ordering purposes.

Calculating Maximum Frequency

Based on the rise and fall time data given in Tables 7 through 11, the maximum frequency the oscillator can operate with guaranteed full swing of the output voltage over temperature can be calculated as:

Max Frequency =
$$\frac{1}{5 \times T \text{ rf}_20/80}$$

where $Trf_20/80$ is the typical value for 20%-80% rise/fall time.

Example 1

Calculate f_{MAX} for the following condition:

- Vdd = 3.3V (Table 7)
- · Capacitive Load: 30 pF
- Desired Tr/f time = 1.31 ns (rise/fall time part number code = F)

Part number for the above example:

TQC2020BIES2-18E-66.666660

Drive strength code is inserted here. Default setting is "-"

Rev. 1.01 Page 7 of 15

TOKYO OUARTZ CO. LTD

Rise/Fall Time (20% to 80%) vs C_{LOAD} Tables

Table 7. Vdd = 1.8V Rise/Fall Times for Specific C_{LOAD}

	Rise/Fall Time Typ (ns)							
Drive Strength \CLOAD	5 pF	15 pF	30 pF	45 pF	60 pF			
L	6.16	11.61	22.00	31.27	39.91			
Α	3.19	6.35	11.00	16.01	21.52			
R	2.11	4.31	7.65	10.77	14.47			
В	1.65	3.23	5.79	8.18	11.08			
T	0.93	1.91	3.32	4.66	6.48			
E	0.78	1.66	2.94	4.09	5.74			
U	0.70	1.48	2.64	3.68	5.09			
F or "-": default	0.65	1.30	2.40	3.35	4.56			

Table 9. Vdd = 2.8V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)							
Drive Strength \ CLOAD	5 pF	15 pF	30 pF	45 pF	60 pF		
L	3.77	7.54	12.28	19.57	25.27		
Α	1.94	3.90	7.03	10.24	13.34		
R	1.29	2.57	4.72	7.01	9.06		
В	0.97	2.00	3.54	5.43	6.93		
Т	0.55	1.12	2.08	3.22	4.08		
E or "-": default	0.44	1.00	1.83	2.82	3.67		
U	0.34	0.88	1.64	2.52	3.30		
F	0.29	0.81	1.48	2.29	2.99		

Table 11. Vdd = 3.3V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)							
Drive Strength \ CLOAD	5 pF	15 pF	30 pF	45 pF	60 pF		
L	3.39	6.88	11.63	17.56	23.59		
Α	1.74	3.50	6.38	8.98	12.19		
R	1.16	2.33	4.29	6.04	8.34		
В	0.81	1.82	3.22	4.52	6.33		
T or "-": default	0.46	1.00	1.86	2.60	3.84		
E	0.33	0.87	1.64	2.30	3.35		
U	0.28	0.79	1.46	2.05	2.93		
F	0.25	0.72	1.31	1.83	2.61		

Table 8. Vdd = 2.5V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)						
Drive Strength \C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF	
L	4.13	8.25	12.82	21.45	27.79	
Α	2.11	4.27	7.64	11.20	14.49	
R	1.45	2.81	5.16	7.65	9.88	
В	1.09	2.20	3.88	5.86	7.57	
T	0.62	1.28	2.27	3.51	4.45	
E or "-": default	0.54	1.00	2.01	3.10	4.01	
U	0.43	0.96	1.81	2.79	3.65	
F	0.34	0.88	1.64	2.54	3.32	

Table 10. Vdd = 3.0V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)								
Drive Strength \ CLOAD	5 pF	15 pF	30 pF	45 pF	60 pF			
L	3.60	7.21	11.97	18.74	24.30			
Α	1.84	3.71	6.72	9.86	12.68			
R	1.22	2.46	4.54	6.76	8.62			
В	0.89	1.92	3.39	5.20	6.64			
T or "-": default	0.51	1.00	1.97	3.07	3.90			
E	0.38	0.92	1.72	2.71	3.51			
U	0.30	0.83	1.55	2.40	3.13			
F	0.27	0.76	1.39	2.16	2.85			

Rev. 1.01 Page 8 of 15

-55°C to +125°C, Single-Chip, One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Pin 3 Configuration Options (OE, ST or NC)

Pin 3 of the TQC2020 can be factory-programmed to support three modes: Output Enable (OE), standby (ST) or No Connect (NC).

Output Enable (OE) Mode

In the OE mode, applying logic low to the OE pin only disables the output driver and puts it in Hi-Z mode. The core of the device continues to operate normally. Power consumption is reduced due to the inactivity of the output. When the OE pin is pulled High, the output is typically enabled in <1 μs .

Standby (ST) Mode

In the \overline{ST} mode, a device enters into the standby mode when Pin 3 pulled Low. All internal circuits of the device are turned off. The current is reduced to a standby current, typically in the range of a few μA . When \overline{ST} is pulled High, the device goes through the "resume" process, which can take up to 5 ms.

No Connect (NC) Mode

In the NC mode, the device always operates in its normal mode and outputs the specified frequency regardless of the logic level on pin 3.

Table 12 below summarizes the <u>key</u> relevant parameters in the operation of the device in OE, ST, or NC mode.

Table 12. OE vs. ST vs. NC

	OE	ST	NC
Active current 20 MHz (max, 1.8V)	4.5 mA	4.5 mA	4.5 mA
OE disable current (max. 1.8V)	4.3 mA	N/A	N/A
Standby current (typical 1.8V)	N/A	0.6 uA	N/A
OE enable time at 110 MHz (max)	130 ns	N/A	N/A
Resume time from standby (max, all frequency)	N/A	5 ms	N/A
Output driver in OE disable/standby mode	High Z	weak pull-down	N/A

Output on Startup and Resume

The TQC2020 comes with gated output. Its clock output is accurate to the rated frequency stability within the first pulse from initial device startup or resume from the standby mode.

In addition, the TQC2020 supports "no runt" pulses and "no glitch" output during startup or resume as shown in the waveform captures in Figure 17 and Figure 18.

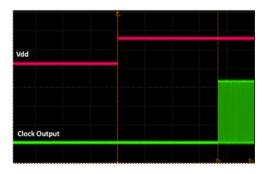


Figure 17. Startup Waveform vs. Vdd

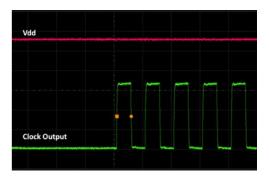
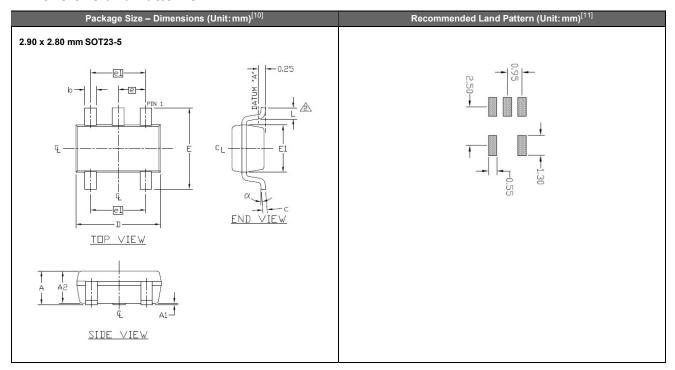



Figure 18. Startup Waveform vs. Vdd (Zoomed-in View of Figure 17)

Rev. 1.01 Page 9 of 15

TOKYO QUARTZ CO.,LTD

Dimensions and Patterns

- 10. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.

 11. A capacitor value of 0.1 µF between Vdd and GND is required

Table 13. Dimension Table

Symbol	Min.	Nom.	Max.
Α	0.90	1.27	1.45
A1	0.00	0.07	0.15
A2	0.90	1.20	1.30
b	0.30	0.35	0.50
С	0.14	0.15	0.20
D	2.75	2.90	3.05
E	2.60	2.80	3.00
E1	1.45	1.60	1.75
L	0.30	0.38	0.55
L1	0.25 REF		
е	0.95 BSC.		
e1	1.90 BSC.		
α	0° – 8°		

Rev. 1.01 Page 10 of 15

TOKYO QUARTZ CO.,LTD

Ordering Information

The Part No. Guide is for reference only. To customize and build an exact part number, use the TQC Part Number Generator.

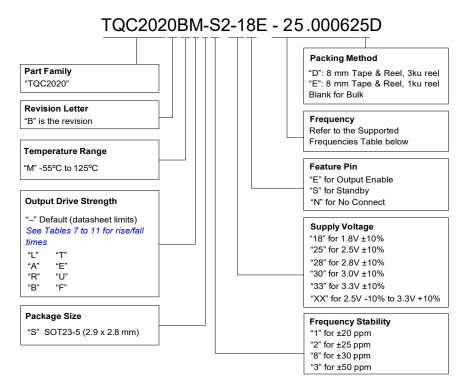


Table 14. List of Supported Frequencies^[12, 13]

Frequency Range (-55 to +125°C)		
Min.	Max.	
1.000000 MHz	61.222999 MHz	
61.974001 MHz	69.239999 MHz	
70.827001 MHz	78.714999 MHz	
79.561001 MHz	80.159999 MHz	
80.174001 MHz	80.779999 MHz	
82.632001 MHz	91.833999 MHz	
95.474001 MHz	96.191999 MHz	
96.209001 MHz	96.935999 MHz	
99.158001 MHz	110.000000 MHz	

Notes:

- 12. Any frequency within the min and max values in the above table are supported with 6 decimal places of accuracy.
- 13. Please contact TQC for frequencies that are not listed in the tables above.

Rev. 1.01 Page 11 of 15

-55°C to +125°C, Single-Chip, One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Table 15. Additional Information

Document	Description	Download Link
Time Machine II	MEMS oscillator programmer	
Field Programmable Oscillators	Devices that can be programmable in the field by Time Machine II	
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	
Qualification Reports	RoHS report, reliability reports, composition reports	
Performance Reports	Additional performance data such as phase noise, current consumption and jitter for selected frequencies	
Termination Techniques	Termination design recommendations	
Layout Techniques	Layout recommendations	

Revision History

Table 16. Datasheet Version and Change Log

Version	Release Date	Change Summary
1.0	5/14/15	Final Production Release.
1.01	9/29/15	Revised the dimension table

Rev. 1.01 Page 12 of 15

-55°C to +125°C, Single-Chip, One-Output Clock Generator

Silicon MEMS Outperforms Quartz

Best Reliability

Silicon is inherently more reliable than quartz. Figure 1 shows a comparison with quartz technology.

Why is EpiSeal™ MEMS Best in Class:

- EpiSeal MEMS resonators are hermetically vacuumsealed during wafer processing, which eliminates foreign particles and improves long term aging and reliability
- MEMS resonator is paired with advanced analog IC

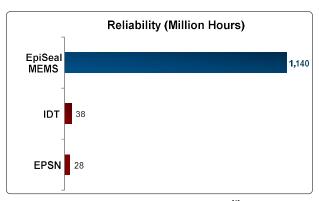


Figure 1. Reliability Comparison[1]

Best Aging

Unlike quartz, EpiSeal MEMS oscillators have excellent longterm aging performance which is why every new EpiSeal MEMS product specifies 10-year aging.

Why is EpiSeal MEMS Best in Class:

- EpiSeal MEMS resonators are hermetically vacuumsealed during wafer processing, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

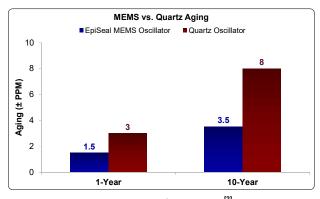


Figure 2. Aging Comparison^[2]

TOKYO QUARTZ CO.,LTD

EpiSeal MEMS oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is EpiSeal MEMS Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to EMS

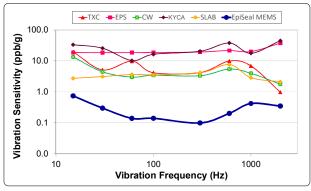


Figure 3. Electro Magnetic Susceptibility (EMS)[3]

Best Power Supply Noise Rejection

EpiSeal MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is EpiSeal MEMS Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- MEMS resonator is paired with advanced analog CMOS IC

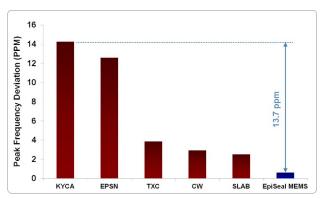


Figure 4. Power Supply Noise Rejection^[4]

Best Electro Magnetic Susceptibility (EMS)

Best Vibration Robustness

Rev. 1.01 Page 13 of 15

-55°C to +125°C, Single-Chip, One-Output Clock Generator

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is EpiSeal MEMS Best in Class:

- The moving mass of MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

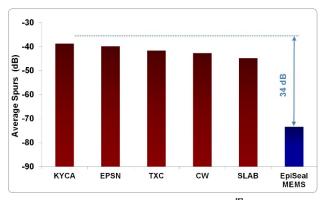


Figure 5. Vibration Robustness^[5]

TOKYO QUARTZ CO.,LTD

Best Shock Robustness

EpiSeal MEMS oscillators can withstand at least 50,000g shock. They maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is EpiSeal MEMS Best in Class:

- The moving mass of MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

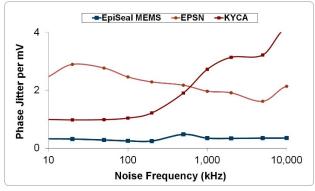


Figure 6. Shock Robustness^[6]

Figure labels:

TXC = TXC Epson = EPSN Connor Winfield = CW Kyocera = KYCA SiLabs = SLAB TQC = EpiSeal MEMS

Rev. 1.01 Page 14 of 15

-55°C to +125°C, Single-Chip, One-Output Clock Generator

TOKYO QUARTZ CO.,LTD

Notes:

- 1. Data source: Reliability documents of named companies.
- 2. Data source: TQC and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - · According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - Antenna polarization: Vertical
 - DUT poTQCion: Center aligned to antenna

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	TQC	TQC9120AC-1D2-33E156.250000	MEMS + PLL
EPSN	Epson	EG-2102CA156.2500M-PHPAL3	Quartz, SAW
TXC	TXC	BB-156.250MBE-T	Quartz, 3 rd Overtone
CW	Conner Winfield	P123-156.25M	Quartz, 3 rd Overtone
KYCA	AVX Kyocera	KC7050T156.250P30E00	Quartz, SAW
SLAB	SiLab	590AB-BDG	Quartz, 3 rd Overtone + PLL

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	TQCime	TQC8208AI-33-33E-25.000000	MEMS + PLL
NDK	NDK	NZ2523SB-25.6M	Quartz
KYCA	AVX Kyocera	KC2016B25M0C1GE00	Quartz
EPSN	Epson	SG-310SCF-25M0-MB3	Quartz

5. Devices used in this test:

same as EMS test stated in Note 3.

- 6. Test conditions for shock test:
 - MIL-STD-883F Method 2002
 - · Condition A: half sine wave shock pulse, 500-g, 1ms
 - \bullet Continuous frequency measurement in 100 μs gate time for 10 seconds

Devices used in this test:

same as EMS test stated in Note 3.

7. Additional data, including setup and detailed results, is available upon request to qualified customer.

Rev. 1.01 Page 15 of 15